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STATISTICAL APPROACHES TO DETECTION AND

QUANTIFICATION OF A TREND WITH RETURN-ON-

INVESTMENT APPLICATION

D. P. Gaver

P. A. Jacobs

1. INTRODUCTION

Members of a group of items such as aircraft, ships, tanks, etc use one or more

subsystems of a particular type. These subsystems have basic design characteristics

which result in specific values for measures of reliability, maintainability,

repairability, etc. The values of these measures have a tendency to change, usually

for the worse, over time. The time of onset of a degrading trend and the magnitude

of the trend are unknown and must be estimated from data.

The evidence of the degradation of a subsystem suggests the possible

economic and operational value of a subsystem upgrade, either by redesign of the

existing subsystem or replacement with a new subsystem. The decision to upgrade a

subsystem will, at least partially, be based on a comparison of the costs of remaining

with the current subsystem and those of investing in the upgraded subsystem

The purpose of this report is to present preliminary models to assist in the

assessment of the cost benefits of upgrading a subsystem in light of noisy data

concerning its performance.

One part of the model is for the detection and qualitative description of a

possible trend in noisy data. Two preliminary formal mathematical models are

presented. One model is presented in Appendix A. Appendix A also describes

maximum likelihood procedures to estimate the time of onset of system



degradation and the magnitude of the trend for one version of the general problem

described. It turns out that this general problem type has been recognized early and

studied by many under the name of changepoint problems; see Carlin, Gelfand and

Smith (1992) for a very recent review of a certain style of approach, plus many

references. The present exposition is self-contained and is directed specifically at an

economic choice problem that potentially arises frequently in military logistics and

procurement. A Bayesian model is presented in Appendix D. Appendix D also

describes the Bayesian estimation procedure.

A second part of the overall model is a cost model which will have as input

the estimates of the time of onset of system degradation and the magnitude of the

trend. A simple cost model is presented in Appendix B. The cost model includes a

fixed cost for upgrading the system as well as costs for each failure for both the

current and upgraded subsystem.

Appendix C presents the results of a simulation experiment using simulated

data to illustrate the type of information that can be obtained concerning the cost

effectiveness of upgrading a subsystem using the model of Appendix A in the light

of the uncertainty of the time of onset of system degradation and the magnitude of

the degradation; the maximum likelihood procedure of Appendix A is used to

estimate the parameters. Appendix D contains results of the Bayesian analysis of the

same simulated data and compares the results of the two procedures.

In the following Section we informally discuss the general model in greater

detail. In Section 3 we discuss an example and the results of the simulation

experiments. Finally, in Section 4 we present conclusions.



2. THE MODEL

To give a concrete feel for the data that we are considering examine the

following illustration. The x's represent actual data ( e.g. total failures in a month),

while the dotted lines represent the true, but hidden trend.

Demand

>

X/

x x yC x

1234 56789 10 11 12 Time

It is plain that there is little evidence of any change in the demand -level until

possibly time t=9, when a retrospective look suggests that a change took place at

about t=6 or 7. Successively more confirmation is given by observations at t=10 and

11, etc. The human eye picks up this new trend rather quickly (the human brain

should remain skeptical about its permanence, and questioning concerning its

magnitude and eventual level). If the trend continues as suggested, greater and

greater confirmation of its direction and magnitude becomes available; this is

quantified by the preliminary mathematical models and statistical methods

described in Appendices A and D. The statistical methods provide estimates of the

true trend (denoted by the dotted line above) based on the number of failures

observed (the x's above); the estimates are of the time of onset of system

degradation and the magnitude of that degradation. As with the human eye, these



estimates become better as more confirmation is received concerning the

permanence of the trend.

A unique feature of problem described in the Introduction is that the

statistical models and estimation procedures are only part of the story. The problem

also includes a comparison of the cost of remaining with the current subsystem and

the cost of upgrading it. These costs will depend on the estimates of the time of

onset of subsystem degradation and the magnitude of that degradation. Appendix B

presents a simple cost model which depends on these estimates. The model is as

follows. The current subsystem has a fixed cost for each failure. The upgraded

system has a (large) known initial fixed cost for the upgrade and then a fixed cost for

each failure. In this simple model it is assumed that the upgraded subsystem has a

known fixed failure rate and a known cost of repair/ replacement. Further, it is

assumed that the subsystem can be upgraded in one time period. After the initial

fixed cost, cF , the mean cost of the upgraded system in each time period is a constant

cost cN multiplied by the (known) mean number of failures in each period.

Informally, the cost model for the current subsystem is a (known) constant cost c

multiplying the true trend; (the dotted line in the above picture). However, since

the true trend is unknown, for each time t an estimate of the cost of the current

subsystem will be computed by multiplying cQ by the estimate of the true trend

obtained from data accumulated up to that time t. Estimates of the future cost of the

current subsystem are computed by multiplying c by the projected estimated trend.

Thus, a decisionmaker will be comparing the (known) future cost of upgrading the

subsystem with an estimated future cost of the current subsystem.

Since the estimates of the true trend have variability, the estimated future

cost of the current system will also have variability. As with the estimates of the

true trend, one can expect the estimates of future subsystem cost to be quite variable



until sometime after the onset of degradation; this variability is due to uncertainty

in the estimates of the true trend and the time of onset. It is important to consider

this uncertainty in the assessment of whether or not to upgrade the current

subsystem. For example, it may be that the estimated mean future cost of the

current subsystem is larger than that for the upgraded subsystem but that the

uncertainty associated with the estimated mean future cost of the current subsystem

is high. This may indicate that it is better to wait to accumulate more information

concerning the apparent degrading trend before deciding to invest in the upgrade.

3. RESULTS

An example with simulated data is presented in Appendix C. The complete

simulated data set appears in Figure 1. The true time of onset of degradation is at

time 10. Before time 10 the true mean number of failures in each time period is u=4.

After time 10 the true trend is linear with a slope of rj=1.5. The true variability of

the data about the true trend line is o2=l for each time period.

The cost model for the example has the following features. The fixed cost per

failure for the current subsystem is c =2. There is a fixed initial cost cF =225 for

upgrading the subsystem. The upgraded subsystem will have a lower mean number

of failures, X=2, in each time period but a higher cost per failure, cN =12, than the

current subsystem before the onset of degradation. After onset of degradation, the

failure rate of the current subsystem may become larger than that of the upgraded

subsystem due to the linear trend. The larger failure rate may offset the fixed cost of

upgrading and make it economical to upgrade. There is also a time horizon, H=30,

during which this subsystem or its upgrade will be used. If the onset of degradation

is too close to the end of this time horizon, then because of the fixed upgrade cost,

cF , it will not be cost effective to upgrade the subsystem. The decision to upgrade

depends on the estimates of the time of onset of system degradation and of the



magnitude of the trend. The assessment of the cost of upgrading should reflect the

uncertainty of these estimates.

For each time t>5 the following policies are considered: upgrade the

subsystem at each future time until the time horizon; all potential upgrading times

from the present time until the time horizon H are considered; that is, if the current

time is t=ll then the policies that would upgrade the subsystem at time 11, time

12,..., time 29, (which is H-l), are considered. For each current time t, the (estimated)

costs of these policies are compared to the (estimated) cost of never upgrading the

subsystem. The "optimal" (minimum estimated mean cost) policy can then be

found.

For comparison purposes the following is a description of the minimum

mean cost policy in the (unrealistic) case in which the true trend in the data is

known at each current time t. However, the decisionmaker is not omniscient and if

the current time is before the onset of subsystem degradation, she will not know

that this will occur. If at each time t, the correct trend for that time were known,

then the minimum average cost policy would stay with the old subsystem until

time 10. At time 10 (the time of onset of subsystem degradation), the decisionmaker

instantly knows that change has occurred and the magnitude of the adverse trend so

she can determine that the best policy is to upgrade the system at time 15. Suppose,

however, that the decisionmaker becomes omniscient at a time after the time of

onset of subsystem degradation (at time 10) and has not upgraded the subsystem. In

this case for current times 11-15, the best policy is to upgrade the subsystem at time

15. For current times 16-23, the best policy is to upgrade the subsystem immediately.

For current times greater than 23 the best policy is never to upgrade the subsystem

(the cost of upgrading exceeds the advantage).



For each time t>5, the simulation experiment of Appendix C considers the

data accumulated up to time t and using the data as of that time estimates the time

of onset of system degradation and the magnitude of the trend For each current

time t, the estimated mean cost for each policy to upgrade the subsystem at some

future time is computed using the current estimates of the trend.

Figure 2 presents the times to upgrade the subsystem which correspond to the

minimum estimated mean cost policies for each current time. On the x-axis appears

the "current" time. On the y-axis is the time to upgrade corresponding to the

minimum estimated mean cost policy. If the minimum estimated mean cost policy

is never to upgrade, then the time to upgrade is set equal to the horizon time, H=30.

The following is a verbal description of these optimal policies. If the current time is

either 5 or 6, the best policy is never to upgrade the system. Note that for the current

time 7 the best policy based on the current estimates of the trend is to upgrade the

system at time 9. An examination of the data in Figure 1 shows that around time 7

there is the local appearance of a positive slope. Hence, locally this policy is not

unreasonable. However, the additional data point at time 8 results in updated

estimates which indicate that the best policy at the current time 8 is never to

upgrade. The best policy for current times 9-11 is never to upgrade. The best policy

at current time 12 is to upgrade the subsystem at time 15. The best policy at time 13

is to upgrade at time 14. The best policy at time 14 is to upgrade at time 15. The best

policy at time 15 is to upgrade immediately. The best policy at times 16-23 is to

upgrade immediately. The best policy for current times larger than 23 is never to

upgrade. Hence, except for current time 7, the optimal policy using the estimated

projected future mean costs agree fairly well with the optimal policy for the case in

which the true trend is known. This suggests that the estimation procedure of

Appendix A requires some patience: one should not upgrade the system the first-



time that an upgrade is indicated, but let some time elapse for confirmation. One

would not expect as close an agreement if the variability of the data about the true

trend were larger since it would become more difficult to estimate the time of onset

of the degradation and the magnitude of the degradation.

So far we have considered only point estimates of the mean cost of each

policy. It may be that the variability of the estimated cost of each policy will yield

more information. In Appendix C the variability of the mean policy costs computed

using the estimation procedure of Appendix A is assessed using the computer

intensive technique of bootstrapping. A brief description of the technique appears

in that Appendix. Selected results are presented graphically in Figures 3-8. Each

figure corresponds to a different current time and presents boxplots of bootstrap

replications of the difference in estimated cost between a policy the upgrades at each

future time and the policy that never upgrades. A description of the boxplot can be

found in Appendix C; one can think of it as similiar to a very terse histogram. The

y-axis represents the possible values of the cost differences. The x-axis represents the

different possible times to upgrade. Since we are subtracting the cost of the policy of

never upgrading from the cost of each policy which upgrades at a time in the future,

a box and its appendages that correspond to negative values indicate that the

estimated costs of the policy to never upgrade are higher than those for a policy that

upgrades and hence it is better to upgrade the subsystem. Informally, the width of

the box and its appendages are an indicator of the variability of the estimated cost

differences between a policy which upgrades at a future time and the policy which

never upgrades; the wider the box the more variable the estimated cost differences.

One would expect the width of the boxes to be large around the time of onset of

subsystem degradation because of the large uncertainty of the estimates. The circle

in each box represents the mean; the line indicates the median.

8



Figure 3 presents boxplots of the mean cost differences for current time t=7 for

all possible policies; the leftmost boxplot presents the cost differences for the policy

of upgrading immediately at time 7; the next boxplot to the right presents the mean

cost differences for the policy of upgrading the subsystem one time unit later, at time

8,etc. The boxplots of Figure 3 indicate that it is better to upgrade the subsystem

almost immediately; the "best" time to upgrade is around time 9, but the sensitivity

to the precise upgrade time is low. The spread (width of the boxes) of the cost

differences is high and there appears to be not much difference between upgrading

the subsystem immediately or waiting until time 14. Hence, the assessment of the

variability of the estimated mean costs is providing the decisionmaker with the

ability to compare different policies in light of the uncertainty of the estimates of the

degrading trend. This additional comparison may prevent a premature decision to

upgrade. Notice that bootstrapping does away with the instability that may result

when the simple point estimate is used, i.e. Figure 2.

Suppose that the decision maker actually delays upgrading until later, either

because she is still gathering information, she is concerned about the variability of

the cost estimates, or because a rule tells her to wait. Figure 4 presents a similiar plot

for the subsystem at current time 10; note that since the boxes of the cost differences

correspond to positive values, the boxplots now indicate that the best policy is never

to upgrade. Figure 5 presents boxplots for the policies evaluated at time 12; there is

an indication that it is better to upgrade the subsystem; however, there appears to be

little difference between upgrading at time 12 or at any time until time 17. Figure 6

presents boxplots for current time 15; there is a clear indication that one should

upgrade the subsystem either immediately or in the next time period. Figure 7

presents the boxplots for the system at current time 18; there is an indication that

one should upgrade immediately. Figure 8 presents the results for current time 25;



here the best policy is never to upgrade. Notice that as the decisionmaker

accumulates more information concerning subsystem degradation, the estimates of

the magnitude of the degradation are becoming better and the variability of the

estimates for policy costs is becoming less.

Figures 9-11 present results of using the Bayesian analysis presented in

Appendix D to obtain information concerning the cost effectiveness of switching to

the new system. The same data set which illustrated the procedures in Appendix C

is used; the data are presented in Figure 1. Since the bivariate normal has 5

parameters to be estimated, the estimation procedure begins with data x
l
,... Jx6

.

Figure 9 presents the times to upgrade the subsystem which minimize the

expected posterior mean cost for each decision time t=6,...29. On the x-axis appears

the "current" time t. On the y-axis is the time to upgrade corresponding to the

minimum expected mean cost policy using the posterior distribution given data

J,,...,*,. Comparison with Figure 2 indicates the following differences between the

optimal Bayes policies and the optimal maximum likelihood (ml) policies presented

in Appendix C. The Bayes policy for t=7 is still to upgrade; however, the time to

upgrade is later (time 13) than the ml policy (which says to upgrade at time 9). The

Bayes policy at time 12 is to upgrade at time 16 rather than time 15 for the ml policy.

The Bayes policies and the ml policies are the same for the other times. Thus, the

Bayes policy is more conservative than the maximum likelihood policy when there

is a change in the policy from never upgrading to upgrading.

Simulation is used to obtain information concerning the variability of the

posterior distribution of the average cost of each policy. For each current time t, a

realization of the model is simulated from the posterior distribution and the

average costs for each policy computed. Figures 10-11 present boxplots of 100

replications of the simulated difference in estimated cost between a policy that

10



upgrades at each future time and the policy that never upgrade. The y-axis

represents the possible values of the cost differences. The x-axis represents the

different possible times to switch.

Figure 10 presents the boxplots for simulated average policy cost differences

using the posterior distribution at the current time of t=7. Figure 3 presents a

similiar picture for bootstrap replications of estimated average policy cost differences

using the maximum likelihood estimates of Appendix C at t=7. Comparison of the

two figures indicates that the Bayes estimates of average cost difference are much

larger and can be positive some of the time; recall that a positive difference implies

that it is better never to upgrade. This behavior may be due to the Bayes procedure

assessing greater variability to the estimated time of the onset of subsystem

degradation than the procedure of Appendix A. Hence, the Bayes estimates are

providing much less evidence of the need to upgrade. Recall that the onset of

degradation does not occur until time 10. Hence, if the true model parameters were

known, the best policy at time 7 (without omniscence) would be never to upgrade.

Figure 11 presents results for current time t=12. Comparing this figure with

the corresponding maximum likelihood figure, Figure 5, indicates that there is little

practical difference between the two procedures in this case also. However, the

widths of the boxes for the Bayesian procedure are larger than those for the

maximum likelihood procedure. The greater widths are an indication of greater

uncertainty concerning the future average costs for each policy. As a result, the

Bayesian procedure is providing less evidence of the need to upgrade. This greater

variability is once again probably due to the Bayes procedure assessing greater

uncertainty to the time of onset of degradation. This suggests that the Bayesian

procedure may be more cautious than the maximum likelihood procedure.

11



A. CONCLUSIONS

Preliminary mathematical models have been formulated for the possible

onset and growth in subsystem degradation. The model recognizes that the time of

onset of a degrading trend may be random, and hence initially unknown, and that

the trend magnitude is also initially unknown. The trend magnitude will become

better known as more data is accumulated. Statistical procedures have been

developed to estimate the time of onset and the trend magnitude. A rudimentary

cost model has been used to develop procedures (which recognize the uncertainty

concerning the time of onset and trend magnitude) to determine estimated costs

and the associated risks of upgrading the subsystem at different times in the future.

An experiment using simulated data gives reasonable results and indicates that the

consideration of variability in policy costs due to uncertainty concerning the time of

onset and trend magnitude can lead to wiser decisions.

12
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APPENDIX A

STATISTICAL MODELS AND ESTIMATION PROCEDURES

In this Appendix we present the statistical model and an estimation procedure.

1. MATHEMATICAL FORMULATION OF A STATISTICAL MODEL

We wish to use a sequence of fluctuating numerical values as a mathematical

model for demand for a particular system during successive periods. Thus, consider

a sequence of random variables with the following structure:

a) X], X2, X3, ... Xc are identically and independently distributed, while

b) Xc+i/ Xc+2/ Xt exhibit a linear trend. The time of onset of subsystem

degeneration , C, called the changepoint, will realistically be unknown, as will the

magnitude of the linear trend.

X ~N(/i,a2

), \<i<C;
, x

Example 1:
,

'
,x A.lv

~N{li + {i-C)T),o
2

\ C + \<i.

This is shorthand for the assumption that X,- is normally/Gaussianly distributed

with mean \i and variance o2 up to the changepoint time C, and is normally

distributed thereafter, with variance o^ but with mean that grows—if the slope, 77, is

positive—linearly thereafter; u is the mean number of failures in each time period

before the onset of degradation; C is the time of onset of degradation; rj is the slope

of the linear trend after degradation; and the variance a^ is a measure of the

variability of the actual number of failures about the true mean. This model should

be appropriate for items whose mean demand /failure rate per time period, e.g.

month, is reasonably large, but whose variance is relatively unchanged when and if

a change in the mean occurs.

14



X.~Po(n), 0<i<C;

Example 2: (A.2)

~Po(n + (i-C)7]), C + l<i

meaning that X, is Poisson distributed with constant mean fi up to C, but thereafter

has a linear trend. This model is most appropriate when the basic demand rate is

small. Many other models are even more appropriate; for instance the Negative

Binomial; Correlated or time-dependent demands may also occur. Attention to all

of these is postponed. The most trustworthy model is likely to be based on some

actual data. We are in the process of assembling such data.

2. LIKELIHOOD ESTIMATION

Suppose observations of the variables (numbers of failures during time periods

l,...,t) Xi, X2, ..., Xt are available; denote them by X}, X2, ••• xt- Then the likelihood

function for the unknown parameters, ji, C, r\, o2 is as follows for Example 1: since

the number of failures in successive time periods are independent, for 1 < C < t, and

letting data = (x\, X2, ..., x\)

-7 *,-^ flO*
t

-i(*,-/i-(,-C)T,)
2
IC2r 2^' "' '-

i 2

L(,i,C, r,,

a

2

;
data) =n ,, , U T==? <A - 3 >

,=i V2;rc» ,=c+i -yzKG

so the log-likelihood is

/(M,C,l7,a
i
;data) = t-i(x,-// f /o» + £ -Ux,,-p-{i-C)tjf lo>

1=1 z .=01 z

— In o2 + constant. (A.4)
2

This can be concisely written as

/(/i,C,7^; data) = £--(*, -/x-(j- C)
+

77) / o2 - -In o2 + constant. (A.5)

1=1 2 ^

15



where

(,-C)
+ =

i-C if i £ C, and

if i < C
(A.6)

Note that the above applies // there is a changepoint within the range of

observation; otherwise, if C > t then

L(//,C, 77, (T
2

; data) = I|-
i=i (A.7)

and

' i t

/(/i,C, 77, cr
2

; data) = ]£—(*,~^) /<**

—

ln<7
2 + constant. (A.8)

i=i

Now in the following hold C fixed and behave as if it were known and the objective

is to maximize / with respect to ji, r\, and a2 . Begin by differentiating with respect to

^ = j^-(x
i -ll )(-\)/o

2 +
y

£-(x
l
-ii-(i-C)71)(-\)/<j

2
, 0<C<r; (A.9)

= X-(j:I
-/i)(-l)/a

2
, if Or. (A.10)

i=i

These expressions can be simplified and combined:

16



dl
a(r)-r/i-

f-C

7=1

9/i (T
2

= tx(t)-tn-
(r-C)

2
+ (r-C)1

2
r; for t > C

= rx(r) - t/j. for t < C

i

where 1(f) = X*,

Rewrite this as

1=^)-,]-
"((/-cr)

2

+(/-cr"

2
V

(A.ll)

(A.12)

where

(t-cr =
t-C if r > C;

if t < C.

(A.13)

If the derivative is set equal to zero we obtain the first "normal equation"

H + \f/,(C,t)rj = x{t) (A.14)

where here

V,(0) = -
((t-cy)

2

+(t-cy
(A.15)

Next differentiate with respect to r; : for t^C:

17



£=I-U-/i-0-C)r?)(-(/-C))

i-C t-C

= X^-C)-/xXy-^I/ <A.16)

«=C+1

where

-c ((r-C)
+

)

3

((r-C)*)
2

( f -cr ,AV-
fV^2 (C,f) = y r = - -+- —+- —

.

(A.17)
2

£T 3 2 6

Set the derivative equal to zero to obtain the second normal equation

^(C,r)/i + ^(C,r)T? = - 5>,(/-C)=;t
2
(C,0 (A.18)

Differentiate with respect to cr

if this is equated to zero and solved for cr there results

a> = ]±(x,-ii-(i-crnf. (A.20)

i=i

Now solve the first two normal equations for the maximum likelihood estimate,

conditional on C; the result is:

m= ¥2
x~ ¥]x (A21)

¥2 - VV

^(c)=
*2 ¥£ (A22)
¥2 ~ ¥1

for C<t; for C>t, (1 (C)=I , t)(C)=0. These can now be substituted into (A.20) to obtain

the maximum likelihood estimate for cr in terms of the other estimates, all
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conditional on the value of C. Finally substitute the above estimates into the

expression for the negative of the log likelihood:

2— /(/i(CO,C,7i(C,t),d
2
(C,0;data)sS(C;data)

_ly (*i-£(C0)
2

,
1 y (*,-/i(C,/)-(/-i-(/-C)r7(Q))

2

r)

+ lno-
2
(C,/) (A.23)

= l + ln6-
2
(C,r)

and obtain the value of C that minimizes S(C;data) over the range (l,2,...,t); denote

this by C(t); the last equality in the above expression follows from the definition of

<7
2
(C,r) given by (A. 20). Thus, the estimate of C is chosen to minimize the sum of

the squared residuals. If the minimum of S(C;data) occurs at t=C, then the

conclusion is that no change has occurred in [0,t]. Note that all estimated parameter

values, namely /},i), and cr depend upon the C value in use, and so the dependence

of S upon C involves that implicit dependency. Once C(t) is developed this value is

substituted into the expression for p.,r\, and a to obtain the maximum likelihood

estimates of those parameters. Note: there are other procedures for estimating the

changepoint. One is explored in Appendix D. Others will be investigated in later

work.
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APPENDIX B

A MATHEMATICAL MODEL FOR COST AND RETURN-ON-INVESTMENT

The statistical model discussed in Appendix A is one part of the problem. In

this Appendix we describe a simple cost model that links with the trend estimation

procedure.

Suppose there is a cost co incurred each time a subsystem fails; the total

average cost incurred during the first t time periods is

CoHd + l) if C>f,

C (r)= c ^> + 77(5- C)
+

] if C<t (B.l)

= [c /i + 77^(C,r)K/ + l)

where u is the constant mean number of failure before the onset of subsystem

degradation, C is the time at which the mean number of failures begins to show

linear degradation, (trend), and rj is the magnitude of that linear trend. Note that

the parameters C, u, and rj are all unknown but may be estimated from data.

Suppose it is possible to upgrade the current system either by redesign of the

existing system or replacement with a new system. The "new" system has a known

constant mean number of failures in each time period X and an average cost per

unit failure of cN . There is also a fixed cost cF of changing to the new system. The

total average cost of using the new system for t time units is

CH (t)
= cF + cNXt (B.2)

Assume there is a planning horizon H during which the parent system will

be operative; when the horizon is reached all (remaining) parents are stored or

disposed of. Note that we do not consider salvage costs in this treatment; they can

be introduced if desired. At each time t one can compare the future cost of the
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current system to that of the new system and choose to change to the new system if

it has a lower mean future cost; that is, at time t the following decision can be made:

1) if C (H)-CQ
(t)<cF +cNX(H-t) (B.3)

then keep the current system;

2) if C (H)-C (t)>cF + cNX(H-t) (B.4)

then switch to the new system.

Since the parameters u, C, and r\ are unknown, the estimation procedures

described in the previous sections can be used to estimate them; the estimated

average cost of the current system can then be obtained by computing C (t) using the

estimates. If desired, alternative estimation procedures can be utilized. There are

many such, and selection should be based on tests with real data.

21



APPENDIX C

A SIMULATION EXPERIMENT

In this Appendix we describe a simulation experiment to illustrate uses of the

model of Appendices A and B. The random numbers were generated using

LLRANDOMH, cf, Lewis and Uribe (1981).

A data set of length 30 ( e.g. 30 months) is generated from model (A.l) with

parameters (1=4, 11=1.5, 0^=1, C=10; that is, data xv ... t xx are generated using (A.l)

with the above parameters. The planning horizon is H=30. The cost per unit failure

for the old system is co=2; the fixed cost for changing to the new system is cF =225; the

cost per unit failure for the new system is cN =12; and the mean number of failures

in each time period for the new system is A =2. Thus the new system has a lower

failure rate than does the old system initially, i.e. before degradation sets in at

(unknown) time C, but the cost per failure for the new system is higher.

The following is a description of the optimal policy for each time t if the

change to the new system has not occurred yet and the correct parameters are

known for time t; if C has not yet occurred, then the policy decision uses only \i and

not C or rj for the decisionmaker is unaware that the system will degrade in the

future. If at each time t, the correct parameters for that time were known, then the

minimum average cost policy would stay with the old system until time 10. At time

10 (the changepoint), the decisionmaker instantly knows that change has occurred

and the magnitude of the adverse trend so he can determine that the best policy is to

change to the new system at time 15. Suppose, however, that the decisionmaker

becomes omniscient at a time after the changepoint (at 10). For times 11-15, the best

policy is to change to the new system at time 15. For times 16-23, the best policy is to

change to the new system immediately. For times greater than 23 the best policy is

never to change to the new system (the cost of change exceeds the advantage).
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Now consider the decision maker in the simulated environment, with

realistic deviation from the average trend. For each time t using the data x
x
,...,x

t
the

following calculations are performed. Starting with t=5, estimates of /i, 77, cr
2

, and C

using (A.20)-(A.22) and the procedure using (A.23) are obtained using noisy

simulated data jc,,...,jc,; denote the resulting estimates by /i(r), T7(r),cr
z

(r), and C{t). The

estimated future mean cost of a policy that switches to the new system x time units

in the future is computed for T=0,... /30-t; that is,

C_(r;r) =

c fi( r + 1) + cF + cNX (30 - (/ + t)) ifC>r

jc (^ + fj(5 + (f-C)
+

))

j=0

+ cF +c„A(30-(r + T)) \iC<t
(CI)

is computed for each x and the minimum cost Cm (t) = minCn^,(r;/) computed. This
T20

minimum cost is compared to the cost of doing nothing (and remaining with the

current system) which is

CM = \

Co/i(30-(r-l)) if C > t ,

30-(

c (/i(30-(r-l))+£r)((r-Cr+5)) ifC<r
(C.2)

s=0

The policy associated with the minimum cost is chosen; in expressions (C.l) and

(C.2) the estimates are p. = /}(/), etc.,for time t.

Figure 1 presents the simulated data set. Figure 2 presents the optimal

policies computed using (C.l) and (C.2) with the estimates using data x
x
,...,x, for each

time t>5; these computations assume that the decision maker is still getting

information and that the change to the new system has not yet occurred. On the x-

axis appears each time the best policy is computed. On the y-axis is the best policy's
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time to change to the new system. The policy of never changing to the new system

is represented by setting the time to change to the new system equal to the horizon

H=30. The following is a description of the results. For times 5-6, the best policy is

never to change to the new system. Note that at time 7 the best policy based on the

current estimates is to change to the new system at time 9. An examination of the

data in Figure 1 shows that around time 7 there is the local appearance of a positive

slope. Hence, locally this policy is not unreasonable. However, the additional data

point at time 8 results in updated estimates which indicate that the best policy at

time 8 is never to change. The best policy for times 9-11 is never to change. The best

policy at time 12 is to change to the new system at time 15. The best policy at time 13

is to change at time 14. The best policy at time 14 is to change at time 15. The best

policy at time 15 is to change immediately. The best policy for times 16-23 is to

change immediately. The best policy for times larger than 23 is never to change.

This suggests that the current way of estimation requires some patience: one should

not change to the new system the first-time that a change is indicated, but let some

time elapse for confirmation.

Resampling or "Bayesian Bootstrapping"

A re-sampling technique called the bootstrap (cf. Efron et al. (1986)) can be

used to assess the variability of the estimated mean cost associated with a policy due

to the uncertainty of the parameter estimates. For each time t, 100 bootstrap

replications x
]
(b;t),. ..,x,(b;t), b=l,...100, are generated using model (A.l) with the

parameter estimates ji(t),r)(t),&(t), and C(t). For each bootstrap replication the

parameters u, T|, g^, and C are re-estimated obtaining ft(b;t),r)(b;t),G(b;t), and C(£;r).

For each bootstrap set of estimated parameters the future mean cost of a policy that

switches to the new system x time units into the future C„^(b;r,r) is computed

using (B.l). The cost of never changing, C
old

{b;t) , is also computed using (B.2).
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Figures 3-8 present boxplots for the differences in costs between the policy

which says to change to the new system at time t+x and the policy which says never

to change, C^ibw^-C^ibj), for T=0,...,30-t for different times t for each bootstrap

replication. The x-axis displays the time to change to the new system,t+i, for each

policy. The y-axis displays the cost differences. A negative value of the cost

difference indicates that it is better to switch to the new system; the more negative,

the greater the estimated mean advantage of changing to the new system.

All the graphical displays are produced by GRAFSTAT, a developmental

product of IBM which the Naval Postgraduate School is using under a test

agreement with IBM. The following description of the boxplot is taken from the

documentation of GRAFSTAT. "The box portion of the plot extends from the lower

quartile of the sample to the upper quartile. (The lower quartile is the point for

which one quarter of the sample lies below and three quarters above. The upper

quartile is analogous.) The line across the center of the box marks the median. The

circle in the box represents the mean.

The distance from the lower to the upper quartile is called the interquartile

distance and it will be represented by Q. The points at the ends of the two lines

(called whiskers) are the smallest and largest points, respectively, within 1.5Q of the

quantiles. The points beyond the whiskers are outlying values."

Figure 3 presents boxplots of the mean cost differences for t=7 for all possible

policies; the leftmost boxplot presents the cost differences for the policy of changing

immediately at time 7; the next boxplot to the right presents the mean cost

differences for the policy of changing to the new system one time unit later, at time

8,etc. The boxplots of Figure 3 indicate that it is better to switch to the new system

almost immediately; the "best" time is around t+T=9, but the sensitivity to the

precise change time is low. The spread of the cost differences is high and there
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appears to be not much difference between switching to the new system

immediately or waiting until time 14. Notice that bootstrapping does away with the

instability that may result when the simple maximum likelihood estimate is used,

i.e. Figure 2.

Suppose that the decision maker actually delays change until later, either

because she is still gathering information or because a rule tells her to wait, and she

agrees. Figure 4 presents a similiar plot for the system at time 10; note that since the

cost differences are positive, the boxplots now indicate that the best policy is never to

change. Figure 5 presents boxplots for the policies evaluated at time 12; there is an

indication that it is better to switch to the new system; however, there appears to be

little difference between switching at time 12 or at any time until time 17. Figure 6

presents boxplots for time 15; there is a clear indication that one should switch to the

new system either immediately or in the next time period. The plot of Figure 7

presents the boxplots for the system at time 18; there is an indication that one

should switch to the new system immediately. Figure 8 presents the results for time

25; here the best policy is to stay with the old system until the end of the time

horizon H=30.

The boxplots can be interpreted as representing an approximate Bayesian

posterior density for the true expected or mean cost, given observations up to time t.

Their depth (length of box) becomes smaller as more data accumulates and

uncertainty of estimation of the changepoint and the degradation rate, T|, is reduced.

But the depth of the boxes, plus the whiskers, provide perspective on the risk of

changing soon, or waiting. Apparently the chance of making the wrong decision

decreases if the decision maker waits, but also the value of making the more nearly

correct decision decreases, for there is less time to the horizon.
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It is important to be clear that the costs compared are estimated mean or

expected costs, and not projected total costs, as there might be experienced during a

future period. Boxplots that exhibit the probable range of these can also be exhibited.

These more nearly represent true risk associated with actual return on investment.

Finally, note that all present calculations ultimately assume that the basic

model is correct, or a good approximation. It may well be reasonable to check

historical data for the approximate way in which degradation occurs — it need not be

a simple ramp of slope r\, but perhaps precision of specification does not matter.
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APPENDIX D

BAYES APPROACH TO CHANGEPOINT ECONOMICS

An enhanced version of the basic model presented in Appendix A is obtained

by assuming that the changepoint (time of onset of degradation) is a random

variable, C, with specified distribution whose parameter is unknown and subject to

a probability density, jc(-). Specifically, suppose

P{C = k} = (\-p)
k - l

p, (D.l)

i.e. is geometric, and that the prior ic(-) is beta. As t advances one observes

x
l
,x2

,...,x,,...x
l
and so in effect one has noisy observations on the outcomes of a

biased coin flip with unknown success probability p.

We also generalize the normal model (A.l) to incorporate more general

known trend functions than linear; in this Appendix, suppose that X-observations

have the following structure:

a) Xi, X2,.-.,Xc are independent and identically distributed normal random

variables with mean |i and variance <J% while

b) Xc + 1, Xc + 2/---/ Xt are independent with Xi normally distributed with

variance a^ and mean u+rjg(i,C); that is,

X. -NC/i.o
2

) if 1 < / < C;

~N(n + 8(1,0^0*) ifC + l<i.
(D -2)

The function g is an arbitrary nonnegative nondecreasing function with g(i,C)=0 for

i<C representing the known form of the degrading trend which occurs after the time

of onset of degradation. For the model of Appendices A and C, g(i,C)=(i-C)+ , a ramp

starting at time C.

Putting (uninformative) priors on u, rj, and p, it is shown that the joint

posterior density of these is straightforwardly obtained; the parameter o^ is initially
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estimated from residuals without using a fully Bayes approach. In principle all of

the above could be carried out for any arbitrary, but reasonable, discrete distribution

that might better represent what is known about the changepoint process. A

similiar statistical model was used by Smith(1975).

In what follows we sketch the development. Suppose that X-observations,

jtp ...,jc,, are available up to time t, it follows that

p{pe(dp),C = k^e(dn\T1 e(dr1),Xi
e(dx

l
\.-^

J
^(dx

J
U.X

l
€(dx

l )}

= K(PW- P^~
l

pTIjj^ cxA-J^(x
j -V- Tlg(j,k))

7
\dndTidp

for k<t (D.3)

= n(p)(\- p)'pf[j^t\p\-j^(x
J
- ^)

2
\dfidridp for k=t+l

The term involving (1-p)* represents the case in which no changepoint has

occurred; we will set k=t+l for this case.

By a completion of squares process one can write the likelihood function for

given C=k as a bivariate normal density with parameters dependent on k and data

up to t; the exponential term of the likelihood is written as

riexpi-—-jiXj -/i - mUMY

J
1= c exp< -

2(1 -pO^^_ 2p
^-^-^),(!^Vmr)

(D.4)y yv v J

for l<k<t-l; for k>t we have no changepoint so the exponential term of the

likelihood is of the form

29



n~p{-^ (^ )2

}

l 2 y
2

J (D.5)

where in the above c is a constant, and the parameters all depend upon k,t, and x(t),

the data up to time t.

For k<t, the parameters of the bivariate normal (D.4) turn out to be

and

where

m,t)==
x(t)g2 -x i

(k,t)g
l m (D6)

TT \2
82 ~(8i)

_x
]

(k,t)-g
]
fj(k,t)

Tf(M = ^ - ;
(D.7)

82

f(k,t)= _
*' —

;

(D.8)

82~W '

v\kj)= _ *

2
—

;

(D.9)

82 ~W '

P(*,0 =—7=; (D.10)

x(r) = -£*,; (D.ll)

Si »Ii (*,*)» -£*,*(./.*) (D.12)
r ;=1

y, ?,(*.») »i£*0'.*); (D.i3)
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and

For the case k>t

1^
*2 S &(*•') = ~X 8

2
U>k )>

y=i

1 x1

K{k,t) = j^^_t
{x

J
-jL{k,t)-ri{k,t)gU,k))

7

//(*,r) = -£*,;'-

(D.14)

(D.15)

(D.16)

y
2
(*,r) =—

;

I

and

K(k,t) = -yt(xr Ji{k,t)?)
2cr p

(D.17)

(D.18)

rj(k,t) = 0, v 2
(k,t) = 0, andp(k,t) = 0. These values can be derived directly from (D.4)

and (D.5); details are omitted.

If the bivariate normal form is utilized in (D.3) and the integration is the

integration is performed over p we obtain the joint conditional density of C, u, and rj

given the data and o^ in the form

P{C = k,pe{dp),T]z{dri)\x{tW}

= n\k,t)- exp^--
2K(\-pzryv [ 2(l-p')|_ y

7T\2 ~\2(p-pV ^(^-/0(r?-r/) (77- 77)-2p
yv v

for k<t where

for k>t

n\k,t) = c'2K^\-p2

rvj'
o
(\ - p)

k ~ l

PK(p)dptxp{-K(k,t));

p{C = k,p€(dp)\x(t\o2
}

i27ty
tXV

{2y'

7T\2= ;r (*'')-7=:exp<( :rT (/i-/i)

with

(D.19)

(D.20)

(D.21)
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7r*(f,r) = c*V2*y£(l -p)"1

p7t(p)dpexp(-K(t,t)) (D.22)

^*(r + l,r) = c'V^ryJ'd - p)' n(p)dpexp(-K(t + 1,0) (D.23)

and

c* = [X^*U,or (D.24)

Note that {rc*(k,t), k<t} is the marginal probability that the changepoint occurs at any

time k up to and including t; while 7t*(t+l,t) is the posterior probability that no

changepoint has occurred up to time t; that is,

7t(k,t) = P{C = k\X
l
=x

:
,...,X

t
= x,) fork<t (D.24a)

n{i + 1,0 = P{C>t \X
}

= x
]

,...,X,=x
l
). (D.24b)

For each time t, the estimate of o^ is computed from the squared residuals for

each possible value of C=k in the following manner; let

a\ka) = -^Y(*, -Ii(k,t)-7j(k,t)g(j,k))
2

if * < r (D.25)

;=i

d2
(k,t) = -^-t(x-fi(k,t))2

ifk>t. (D.26)

Finally, the estimate of the variance o^ based on data x
:
,...,x, is

1+1

6-2 (r) = X ;r*^ f)^
2^ / )- (D -27)

*=i

Given C=k, k<t, and the data x
x
,...,x

t , the posterior distribution of (u,T|) is

bivariate normal with mean (JI(k, t),T)(k,t)), variance of u equal to y2(k,t), variance of

T| equal to i)2(k,t), and correlation p(k,t); for k=t,t+l, rj=0 and the posterior

distribution of u is normal with mean ]I(k,t) and variance y
2 (k,t). Hence, given the

data xv ...,x
t
, the posterior distribution of (n/n.) is a mixture of bivariate normal

distributions with mixture distribution {7t*(k,t), k<t+l}.
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At time t, the future mean cost of a policy that switches to the new system x

time units in the future is given by (C.l) with (t-C)+ replaced by g(t,C); the mean cost

of remaining with the current system is given by (C.2) with (t-C)+ replaced by g(t,C).

Since the mean costs are linear in u and T|, the posterior distribution of the future

mean cost given the data x
x
,...,x

t
is a mixture of normal distributions with mixture

distribution (7t*(k;t), k<t+l}. The variability of the estimated future mean cost for

each policy can be evaluated either by computing the percentiles of the posterior

distribution or by simulating the posterior distribution.

Figures 9-11 present results of using the Bayesian analysis presented in this

Section to obtain information concerning the cost effectiveness of switching to the

new system. The same data set which illustrated the procedures based on

maximum likelihood in Appendix C is used; the data are presented in Figure 1.

Since the bivariate normal has 5 parameters to be estimated, the estimation

procedure begins with data x^...,x6 . The initial estimate of o^ is

& = jt(Xj-X)
2

(D.28)

where x is the sample average of the first 5 data points. For each rime t, estimates of

the posterior distribution are obtained from equations (D.6)-(D.27). The updated

estimate of o^ is used as input for the calculations for the next time period.

Figure 9 presents the times to upgrade the subsystem which minimize the

expected posterior mean cost for each decision time t=6,...29. On the x-axis appears

the "current" time t. On the y-axis is the time to upgrade corresponding to the

minimum expected mean cost policy using the posterior distribution given data

Xj,...,jr,. Comparison with Figure 2 indicates the following differences between the

optimal Bayes policies and the optimal maximum likelihood (ml) policies presented

in Appendix C. The Bayes policy for t=7 is still to upgrade; however, the time to

upgrade is later (time 13) than the ml policy (which says to upgrade at time 9). The
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Bayes policy at time 12 is to upgrade at time 16 rather than time 15 for the ml policy.

The Bayes policies and the ml policies are the same for the other times. Thus, the

Bayes policy is more conservative than the maximum likelihood policy when there

is a change in the policy from never upgrading to upgrading at some time.

Simulation is used to obtain information concerning the variability of the

posterior distribution of the average cost of each policy. For each current time t, a

realization of (C,u,T|) is simulated from the posterior distribution and the average

costs for each policy computed. Figures 10-11 present boxplots of 100 replications of

the simulated difference in estimated cost between a policy that switches to the new

system at each future time and the policy that never switches. The y-axis represents

the possible values of the cost differences. The x-axis represents the different

possible times to switch.

Figure 10 presents the boxplots for simulated average policy cost differences

using the posterior distribution at the current time of t=7. Figure 3 presents a

similiar picture for bootstrap replications of estimated average policy cost differences

using the maximum likelihood estimates at t=7. Comparison of the two figures

indicates that the Bayes estimates of average cost difference are much larger and can

be positive some of the time; recall that a positive difference implies that it is better

never to change. Hence, the Bayes estimates are providing much less evidence of

the need to change to the new system. Recall that the changepoint does not occur

until time 10. Hence, if the true model parameters were known, the best policy at

time 7 would never change.

Figure 11 presents results for current time t=12. Comparing this figure with

the corresponding maximum likelihood figure, Figure 5, indicates that there is little

practical difference between the two procedures in this case also. However, the

widths of the boxes for the Bayesian procedure are larger than those for the
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maximum likelihood procedure. The greater widths are an indication of greater

uncertainty concerning the future average costs for each policy. As a result, the

Bayesian procedure is providing less evidence of the need to upgrade. This greater

variability is once again probably due to the Bayes procedure assessing greater

uncertainty to the time of onset of degradation. This suggests that the Bayesian

procedure may be more cautious than the maximum likelihood procedure.
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GLOSSARY

ji: mean number of failures per time period for current subsystem before

degradation

tj: multiple of degrading trend for current subsystem

o^: variance of number of failures per time period for current subsystem

C: time of onset of degrading trend for current subsystem

Xi: number of failures occurring in time period i for current subsystem

X: mean number of failures per time period for upgraded subsystem

c : cost per failure for current subsystem

cF : initial fixed cost for upgrading current subsystem

cs : cost per failure for upgraded subsytem
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